S520 Homework 9

Enrique Areyan
 March 30, 2012

11.4. \#B-1: 2-sample location problem.
(a) The experimental unit is a student.
(b) The experimental units belong to one of two populations:
i. Calculus students who belong to a sorority or fraternity at William \& Mary.
ii. Calculus students who do not belong to a sorority or fraternity at William \& Mary.
(c) One measurement (score on quiz) is taken on each experimental unit.
(d) Let X_{i} denote score on the quiz for sorority or fraternity student i.

Let Y_{j} denote score on the quiz for student j who is not on a sorority or fraternity.
Then, $X_{1}, X_{2}, \ldots, X_{n 1} \sim P_{1} ; Y_{1}, Y_{2}, \ldots, Y_{n 2} \sim P_{2}$.
We are interested on drawing inferences about $\Delta=\mu_{1}-\mu_{2}$
(e) $\Delta>0$ iff $\mu_{1}>\mu_{2}$. Higher score on the test suggest better understanding of the subject matter. Thus, to test the theory in favor of sorority or fraternity students we might want to test $H_{0}: \Delta \leq 0$ vs. $H_{1}: \Delta>0$
11.4.\#B-2: 2-sample location problem
(a) The experimental unit is an elderly men, defined to be more than 70 years of age.
(b) The experimental units belong to one of two populations:
i. Single, elderly men who own dogs.
ii. Single, elderly men who do not own dogs.
(c) One measurement (score on the Hamilton instrument) is taken on each experimental unit.
(d) Let X_{i} denote score for dog owner i.

Let Y_{j} denote score for man j who do not own a dog.
Then, $X_{1}, X_{2}, \ldots, X_{n 1} \sim P_{1} ; Y_{1}, Y_{2}, \ldots, Y_{n 2} \sim P_{2}$.
We are interested on drawing inferences about $\Delta=\mu_{1}-\mu_{2}$
(e) $\Delta<0$ iff $\mu_{1}<\mu_{2}$. Lower scores suggest lack or low levels of depression. Thus, to test the theory in favor of dog owners we might want to test $H_{0}: \Delta \geq 0$ vs. $H_{1}: \Delta<0$
11.4.\#B-3: 1-sample location problem
(a) The experimental unit is a person.
(b) The experimental units belong to one population, i.e., aerobic students.
(c) Two measurements were taken on each experimental unit:
i. Number of watts expended during protocol S (30 -minute ride on the first week)
ii. Number of watts expended during protocol D (30-minute ride on the second week)
(d) Let S_{i} be the score on protocol S for student i, and let D_{i} denote score on protocol D for student i. Then, $X_{i}=D_{i}-S_{i}$ is the random variable of interest. We are interested on drawing inferences about μ
(e) $\mu>0$ iff $D_{i}>S_{i}$. Thus, to test the theory in favor of dynamic streches we might want to test $H_{0}: \mu \leq 0$ vs. $H_{1}: \mu>0$
11.4.\#B-4: 2-sample location problem
(a) The experimental unit is a tennis ball.
(b) The experimental units belong to one of two populations:
i. Championship balls.
ii. Practice balls.
(c) One measurement (height of the first bounce from 2 meters) is taken on each experimental unit.
(d) Let X_{i} denote the height of the bounce for practice ball i.

Let Y_{j} denote the height of the bounce for championship ball j.
Then, $X_{1}, X_{2}, \ldots, X_{n 1} \sim P_{1} ; Y_{1}, Y_{2}, \ldots, Y_{n 2} \sim P_{2}$.
We are interested on drawing inferences about $\Delta=\mu_{1}-\mu_{2}$
(e) $\Delta<0$ iff $\mu_{1}<\mu_{2}$. Thus, to test the theory that practice balls do not wear as well, i.e., lose their bounce more quickly than championship balls, we might want to test $H_{0}: \Delta \geq 0$ vs. $H_{1}: \Delta<0$
11.4. \#C-1: 2-sample location problem
(a) The experimental unit is a middle-aged man.
(b) The experimental units belong to one of two populations:
i. Type A heavy men.
ii. Type B heavy men.
(c) One measurement (cholesterol level) were taken on each experimental unit.
(d) Let X_{i} denote the cholesterol level for man i (Type A). Let Y_{j} denote the cholesterol level for man j (Type B). Then, $X_{1}, X_{2}, \ldots, X_{n 1} \sim P_{1} ; Y_{1}, Y_{2}, \ldots, Y_{n 2} \sim P_{2}$. We are interested on drawing inferences about $\Delta=\mu_{1}-\mu_{2}$
(e) $\Delta>0$ iff $\mu_{1}>\mu_{2}$. Thus, to document that Type A have higher cholesterol than Type B, we might want to test $H_{0}: \Delta \leq 0$ vs. $H_{1}: \Delta>0$
11.4.\#C-2: Both normal probabilities plots for Type A and B suggest that some values may be inconsistent with the normality assumption, especially the largest values of each set (which can be easily seen in a boxplot). Moreover, for type A, the $I Q R(x) / \operatorname{sqrt}(\operatorname{var}(x))=0.9552842$, for type $\mathrm{B} \operatorname{IQR}(y) / \operatorname{sqrt}(\operatorname{var}(y))=1.282584$. Type B ratio suggest a sample more close to a normal distribution, but also possesses the largest outliers which may be in contradiction with the symmetric and hence, normal assumption. In short, there are too many outliers compared to a typical normal distribution. It seems that it is somewhat unlikely (although not impossible) that the data was drawn from a normal distribution. I would not assume it to be normal distributed.
11.4.\#C-3: (a). We want to calculate the following:

$$
T_{W}=\frac{\hat{\Delta}-\Delta_{0}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}
$$

From the data we know the following:

$$
\begin{gathered}
\hat{\Delta}=34.75 ; \Delta_{0}=0 ; S_{1}^{2}=1342.366 ; S_{2}^{2}=2336.747 ; n_{1}=n_{2}=20 . \text { Thus, } \\
t_{W}=\frac{34.75-0}{\sqrt{1342.366^{2} / 20+2336.747^{2} / 20}}=2.5621
\end{gathered}
$$

Now we need to calculate the degrees of freedom for the Welch's approximate t-test:

$$
\hat{\nu}=\frac{\left(\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(S_{1}^{2} / n 1^{2}\right)^{2}}{n_{1}-1}+\frac{\left(S_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}}=35.4131
$$

If we let $\alpha=0.05$, then $\mathbf{p}=P_{\Delta_{0}}=P\left(T_{W} \geq t_{w}\right)=1-p t(2.5621,35.4131)=0.0074<0.05=\alpha \Longrightarrow$ reject H_{0}
(b). We want a 90% confidence interval for Δ, thus, let $q t=q t(0.95,35.4131)=1.6890$. Then,

$$
\hat{\Delta} \pm q_{t} \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}=34.75 \pm 1.6890 * 13.5630=(11.8421,57.6579)
$$

Cholesterol Level

From the graph of Kernel densities above it is clear that P_{1} and P_{2} do not belong to a family shift. These two distributions do not have comparable variances. The variance for X (Type A) is $s_{1}^{2}=1342.365789$, and for Y (Type B) is $s_{2}^{2}=2336.747368$, moreover: $s_{1}^{2} / s_{2}^{2}=0.5745$. There is less variability in X compared with Y, which can be seen graphically (X's graph is narrower than Y's).
11.4.\#C-5: (a) Replace $\Delta=\mu_{1}-\mu_{2}$ with $\Delta=\theta_{1}-\theta_{2}$. Now, let \vec{x} contain the date for Type A , and \vec{y} the data for Type B. The data contains ties, thus:
$W 2 \cdot p \cdot \operatorname{ties}(x, y, 0,100000)=0.0118$ to test the one sided hypothesis: $\mathbf{p}=0.0118 / 2 \approx 0.0059<0.05=\alpha \Longrightarrow$ reject H_{0}
(b) $W 2 . c i(x, y, .1,100000)=$
k Lower Upper Coverage
13812600.90843
13913600.90244
14013600.89949
14113600.89084
14214590.88648.

Thus, with $k=140$ we obtain an interval of almost 90%. The interval is: $(13,60)$.

